Meteorological Factors Related to Emergency Admission of Elderly Stroke Patients in Shanghai: Analysis with a Multilayer Perceptron Neural Network

نویسندگان

  • Guilin Meng
  • Yan Tan
  • Min Fang
  • Hongyan Yang
  • Xueyuan Liu
  • Yanxin Zhao
چکیده

BACKGROUND The aim of this study was to predict the emergency admission of elderly stroke patients in Shanghai by using a multilayer perceptron (MLP) neural network. MATERIAL AND METHODS Patients (>60 years) with first-ever stroke registered in the Emergency Center of Neurology Department, Shanghai Tenth People's Hospital, from January 2012 to June 2014 were enrolled into the present study. Daily climate records were obtained from the National Meteorological Office. MLP was used to model the daily emergency admission into the neurology department with meteorological factors such as wind level, weather type, daily maximum temperature, lowest temperature, average temperature, and absolute temperature difference. The relationships of meteorological factors with the emergency admission due to stroke were analyzed in an MLP model. RESULTS In 886 days, 2180 first-onset elderly stroke patients were enrolled, and the average number of stroke patients was 2.46 per day. MLP was used to establish a model for the prediction of dates with low stroke admission (≤4) and those with high stroke admission (≥5). For the days with low stroke admission, the absolute temperature difference accounted for 40.7% of admissions, while for the days with high stroke admission, the weather types accounted for 73.3%. CONCLUSIONS Outdoor temperature and related meteorological parameters are associated with stroke attack. The absolute temperature difference and the weather types have adverse effects on stroke. Further study is needed to determine if other meteorological factors such as pollutants also play important roles in stroke attack.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and analysis of leishmaniasis distribution process using multilayer perceptron neural network and support vector regression (Case study: villages of Isfahan province)

Villages located in Isfahan province are one of the areas prone to the spread of cutaneous leishmaniasis, which is characterized by the occurrence of wounds on the skin. To predict the future prevalence of cutaneous leishmaniasis, Continuous monitoring of the spatial distribution of this disease is essential. Disease modeling was performed using two machine learning algorithms called support ve...

متن کامل

Application of multilayer perceptron neural network and support vector machine for modeling the hydrodynamic behavior of permeable breakwaters with porous core

In this research, the application of multilayer perceptron (MLP) neural networks and support vector machine (SVM) for modeling the hydrodynamic behavior of Permeable Breakwaters with Porous Core has been investigated. For this purpose, experimental data have been used on the physical model to relate the reflection and transition coefficients of incident waves as the output parameters to the wid...

متن کامل

A New Hybrid model of Multi-layer Perceptron Artificial Neural Network and Genetic Algorithms in Web Design Management Based on CMS

The size and complexity of websites have grown significantly during recent years. In line with this growth, the need to maintain most of the resources has been intensified. Content Management Systems (CMSs) are software that was presented in accordance with increased demands of users. With the advent of Content Management Systems, factors such as: domains, predesigned module’s development, grap...

متن کامل

Robot control system using SMR signals detection

One of the important issues in designing a brain-computer interface system is to select the type of mental activity to be imagined. In some of these systems, mental activity varies with user intent and action that must be controlled by the brain-computer system, and in a number of other signals, the received signals contain the same activity-related mental activity that should be performed by t...

متن کامل

Application of Two Methods of Artificial Neural Network MLP, RBF for Estimation of Wind of Sediments (Case Study: Korsya of Darab Plain)

The lack of sediment gauging stations in the process of wind erosion, caused of estimate of sediment be process of necessary and important. Artificial neural networks can be used as an efficient and effective of tool to estimate and simulate sediments. In this paper two model multi-layer perceptron neural networks and radial neural network was used to estimate the amount of sediment in Korsya o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2015